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Abstract

Given a bayesian network relative to a set I of discrete random variables, we are interested in
computing the probability distribution P(A/B), where A and B are two disjoined subsets of
I. The general idea of the algorithm of successives restrictions is to manage the successions of
summations on all random variables out of the target in order to keep on the target a structure
less constraining than the Bayesian network, but which allows saving in memory ; that is the
structure of Bayesian Network of Level Two.

1 Introduction

Given a bayesian network relative to a set (X;);es of discrete random variables, we are interested in compu-
tation of the probability distribution of a subset A of random variables conditionally to another subset B,

where A and B are two disjoined subsets of I. According to Bayes theorem : P(z4|zg) = % thus
T 5 !

to compute this conditional probability we need to compute the probability distribution of X 45, which we
called “target”. The general idea is to manage the successions of summations on all random variables X,
forie I-(AUB))=AUB.

Our aim is to compute P(z4|zg), for one target A, not as in many studies which developed some effective
algorithms to compute P(z;|xp) for each i € I, this makes the difference between our algorithm and the
clustering-based algorithms. In this algorithm we do not state on the target any particular assumption in
connection with the structure of the bayesian network. The subset A can have more than one variable, and
not specially variables which belong to the same clique as in (Lauritzen, 1988) where the targets are cliques
organized in a structure of a junction tree. In other words, in (Lauritzen, 1988), we can compute P(z4|zp)
if A is a subset of variables of the same clique.

2 Bayesian network of level two

We consider a probability P of a finite family (X;);er, of random variables on a finite space Q;. Let Z be a
partition of I and let us consider a directed acyclic graph G on 7 ; we say that there is a link from J toJ"
(where J' and J' are atoms of the partition Z) if (J',J ) € G. If J € Z, we note p(J) the set of parents of
J, that is the set of J' such that (J',.J) € G.

Let a(J) be the initial subset (ancestors) defined by J, in other words the set consisting in J itself and the
J"" such as there is a path in G from J” to J ; we can identify it with the union of all J" such that J" € a(J).
Definition 1 : The probability P; is defined by the Bayesian network of level two (BN2), on I,
(Z,G,(Py/p(1))sez), if for each J € Z, we have the conditional probability Pj/,.s), in other words the
probability of X; conditioned by X,y (which, if p(.J) = @, is the marginal probability P;), such as :

Pr(zy) = H Pipir (wJ/%(J))'
JeT

An usual Bayesian network (said of level one : BN1) is a particular case of BN2, with the partition of I
into singletons.



Figure 1: Exzample of a Bayesian network of level two

Definition 2 : Let cd(J) be the set (possibly empty) of the close descendants of J, in other words the
children of J and, if there are any out of the children themselves, the vertices located on a path between J
and one of his children.

(2)
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Figure 2: Bayesian network of level two

cd(1) = {2,{3,4},6}, which we can write also : ed(1) = {2,3,4,6}.
3 Algorithme of successives restrictions

Let (I,G, (P;/p(i))ier) be a bayesian network. Given a subset A of I, known as “target”, we consider the
problem of computing the probability distribution of (X;);ca = Xa. To solve this problem, we suggest an
algorithm said algorithm of successives restrictions. The general idea is to manage the summations that we
have to do relatively to the random variables X, for £ € A (A =1 — A).

3.1 Principele of the algorithme

Given a bayesian network (I,G, (P;p(;))ier) and a subset A of I, the general idea of the algorithm of
successive restrictions is to build a sequence of subsets (Io,...,I;) with £ = Card (I — A), and for each

0 < s < £ astructure of bayesian network of level 2 on I, noted Ry = (Zs, G5, (Pyjp(s))sez., Which defines
Pz, , probability ditribution of X;, = (X;)ier,, such that :

1. Zp is the initial network (so Iy = I).



2. Each element of I, which contains an element of A is a singleton.

3. Once the algorithm is performed, I; = A and the probability distribution of (X;);c4 can be computed
simply by product of the conditional probabilities in the bayesian network of level two obtained on I; .

Figure 3: (a) : Example of BN2. (b) : BN2 resulting after summation over 6 : Eg = {7,8,9,10,11}.

Now let’s specify the general step of this algorithm : we start with a BN2, on L. C I, R =
(Z,G,(Py/p(1))sez), defining Pr, where L = Ujer J ; we will obtain at the exit a BN2, on L' = L — {i},
R' = (T',G', (Py/p(5)) 7€), defining Pr,. We choose a variable i of AN L ; according to what precedes, the
singleton ¢ belongs to 7 ; this choice is made in such a way that ¢ has no descendant in A. Than the BN2 R’
has for vertices the atoms of the partition Z', which are :

1. the set of close descendants of 7 in R, which we denote E; (E; = cd(i)),
2. all the atoms of 7 other than 7 and those in E; .
The graph G’ results from the graph G in the following way :
1. we delete the links (for G) relative to i and to the elements of Ej;,
2. we keep all other links of G,

3. we introduce to E; a set of parents, p'(E;), which includes : all parents of i in G and all parents of
vertices belonging to the close desendants of 4, others than ¢ or those in E; itself.

4. we introduce as children to E; all children of vertices of R belonging to FE;, others than those in E;
itself.



The probabilistic data associated to R’ can be computed from those associated to R in the following way :

1. we conserve the probability, conditionally to his parents, for each vertex such that the passage from R
to R' changes neither itself nor his parents (in other words, each vertex other than i, those in E; and
the children of those in E;);

2. for each child J of E; (in G), his probability, conditionally to his parents, is preserved by substitution
of E; to the set of the parents of J (in G) which belongs to E;, and we conserve the information that
only these variables intervene in p’J/El_.

3. we create the probability of E; conditionally to p'(E;), which can be computed owing to the following

formula
Pp.jp (8 (TE: [Ty () = Z [ ( H Prpp) (@ /xp(1)) ) i/p(i) (Ti [ Tp(i))
T €Q; JEE;
Proof :
To simplify the notation, we will note »_; for 3° o and, for each subset B = {by,..., b} of L,
> p for Zzbleﬂbl oo Doy e, we will omit to write the varlables (for example we write Pj/p( 7) for

Pj/p1y(w1/7p1))). The various objects intervening in this proof may be visualized on the example given in
figure 3 (a).

The computation of Pg, /s (g;) can be done by using only vertices in a(F;) the initial subset defined by E.
which includes p'(E;) by construction ; we decompose a(F;) according to the partition (E;, {i},p'(E;), G;),

where a(p’(Ei)) =p'(E;) UG;. Then

Prup (5 Z Z [(H PJ/p<J>) /(i) ( H Py jp( )( IT i )]

JEE; kep' (F:) heG;

We notice that the index i is present only in (HJeE,- PJ/p(J)) P;/p(iy whereas all the £ in G; may be present

only in ( Hep sy Prsoi ) ( Hhea: Pason ) SO

Pr,ip(5:) = {Z [(H Py/p(s ) /(i ]}{;[( II P )(H Pr/pn )]}

JEE; ; kep' (Eq) hed;
Since Pp(p;) = g, [( Miep ) Prspe) ) ( hea, Prpen )) ]’ we get

Peip () = Z [(H Piwa )Pi/p(n]-

JEE;
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